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Videogrammetry is an inexpensive and easy-to-use technology for spatial 3D scene recovery. When
applied to large scale civil infrastructure scenes, only a small percentage of the collected video frames
are required to achieve robust results. However, choosing the right frames requires careful consideration.
Videotaping a built infrastructure scene results in large video files filled with blurry, noisy, or redundant
frames. This is due to frame rate to camera speed ratios that are often higher than necessary; camera and
lens imperfections and limitations that result in imaging noise; and occasional jerky motions of the cam-
era that result in motion blur; all of which can significantly affect the performance of the videogrammet-
ric pipeline. To tackle these issues, this paper proposes a novel method for automating the selection of an
optimized number of informative, high quality frames. According to this method, as the first step, blurred
frames are removed using the thresholds determined based on a minimum level of frame quality required
to obtain robust results. Then, an optimum number of key frames are selected from the remaining frames
using the selection criteria devised by the authors. Experimental results show that the proposed method
outperforms existing methods in terms of improved 3D reconstruction results, while maintaining the
optimum number of extracted frames needed to generate high quality 3D point clouds.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Over the past few years, computer vision based technologies
have been considered as cost effective and easy-to-use alternatives
to traditional spatial sensing methods, e.g., laser scanning and
range cameras [1–4]. In the Architecture, Engineering, and Con-
struction (AEC) domain, the collected spatial data is useful for
designers, engineers, and inspectors to control/verify quality issues
of construction projects [5,6], identify deviations between as-built
and as-designed structures [7–9], analyze safety and productivity
issues [10], monitor projects’ progress in a more proactive manner
[11–14], and assess damages caused by disasters [15–17]. Com-
puter vision based 3D reconstruction methods are generally based
on processing a number of captured images (photogrammetry) or
video streams (videogrammetry) from the scene. In comparison
with arbitrarily taken images, sequential video streams provide
more valuable information for processing [18]. In the AEC domain,
it is more convenient to videotape a relatively large civil infrastruc-
ture scene rather than taking hundreds or thousands of images.
However, when it is applied to civil infrastructure, the feasibility
of videogrammetry significantly suffers from two issues. During
videotaping a scene with off-the-shelf cameras, it is difficult to pre-
cisely restrict and control the overall camera speed and motion sta-
bility. As a result, motion blur will occur, significantly impacting
the performance of the reconstruction. Efficiency in processing of
video frames is the second issue. Even a short 1 min video stream
consists of 1500–1800 frames. Obviously it is computationally
expensive to process all these frames. To achieve a satisfactory re-
sult, only a small portion of these frames is necessary for post pro-
cessing. Thus far, there is a lack of effective and automatic methods
for selection of informative, high quality frames for 3D spatial
sensing of infrastructure using videogrammetry.

Evaluating the feasibility of applying videogrammetry in spatial
sensing of civil infrastructure is an active field of research. How-
ever, only very little research has been conducted to develop algo-
rithms for selecting key frames in the 3D reconstruction pipeline.
Current key frame selection algorithms consider criteria in regard
to sufficient overlap between frames, avoiding degeneracies, and
minimizing reprojection errors. Optimizing the number of ex-
tracted frames is another important factor that is neglected by cur-
rent research efforts. For example, increasing the number of
extracted key frames will improve the density and completeness
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Fig. 1. Impact of length of baseline on accuracy of 3D reconstruction results.
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of the resulting point clouds. However, once the results reach a cer-
tain level of density and completeness, processing more frames is
redundant and makes the procedure computationally ineffective.
In terms of applying videogrammetry to practical settings, none
of current research undertakings have dealt with motion blur ef-
fects contained in captured video, which leads to significantly de-
creased accuracy of the 3D reconstruction.

Considering the aforementioned gaps in videogrammetric
research for surveying civil infrastructure, this paper proposes a
novel method of automating the selection of informative, high-
quality frames for processing in the videogrammetric pipeline.
According to the method, blurred frames are removed using
thresholds determined based on the minimum level of frame qual-
ity required to obtain robust results. Then, an optimum number of
key frames are selected from the remaining frames using a set of
selection criteria devised by the authors. Lastly, the proposed
method is incorporated into the videogrammetric pipeline and
tested on a concrete highway bridge. The remainder of this manu-
script is organized as follows: Sections 2 and 3 outline current
practices for handling low image quality and video frame redun-
dancy and recent research efforts in this direction. This is followed
by the research statement and objective, and our proposed method
for automating the selection of high quality, informative frames for
3D reconstruction of infrastructure in Sections 4 and 5. In Section 6,
experiments are conducted to test the validity of the proposed key
frame selection algorithms and measure the accuracy and com-
pleteness of applying the complete videogrammetric pipeline to
reconstructing a concrete highway bridge. Finally, conclusions
are drawn in Section 7.
2. State of practice

Over the past two decades, videogrammetry has emerged as a
popular reconstruction and measurement tool [18,19]. It is mainly
utilized for reverse engineering in the manufacturing industry for
the purpose of collecting geometric and spatial data of objects
[20]. For most manufacturing reverse engineering cases, objects
are small (i.e., in comparison with civil infrastructure), video clips
are short (i.e., a couple of seconds) and data are collected in con-
trolled settings (i.e., stabilized camera stations or uniform speeds
of camera movements). As a result, quality of frames and necessity
to extract a small amount of frames for post processing is not a ma-
jor issue. For most industrial applications, it is possible to process
all frames or just a number of them that are selected at a steady
interval based on a specific frame rate.

While videogrammetry works well for the manufacturing
industry, applying it to the civil infrastructure domain faces several
practical constraints, preventing its adoption in real construction
practices [21]. Poor quality of captured frames is a major concern
that significantly undermines the performance of 3D reconstruc-
tion. Unlike manufacturing applications in indoor environments,
it is difficult to control outdoor conditions. Motion blur is inevita-
ble due to occasional jerky movements of the camera that occur
when traversing a site. Moreover, considering size and level of
complexity, videotaping civil infrastructure usually takes several
minutes instead of a few seconds. This means that there are tens
of thousands of frames that need processing. Estimating the cam-
era poses and the 3D scene structures is computationally expen-
sive if it is performed on all frames in a video sequence. If the
video sequence can be temporally decimated, then this process
can be executed more efficiently.

Sufficient baseline between two consecutive frames is another
important factor for any robust 3D reconstruction, on the grounds
that the short baselines usually induce larger measurement
errors than those produced by the long baselines (Fig. 1) [22].
Consequently, consecutive frames must have long enough
baselines for accurate 3D reconstruction.

Besides the above mentioned problems, there are failure risks
for the 3D reconstruction algorithms known as degeneracy cases.
Usually, the 3D reconstruction algorithms perform well if there is
a generic camera motion (i.e., a camera movement has both rota-
tions and translations) and generic point positions (i.e., the scene
has points with different depths). However, when the generic con-
ditions for camera motion or structure do not hold, the method
fails. The degeneracy cases can be divided into two categories:

– Motion degeneracy: If a camera rotates around its center with-
out any translation, epipolar geometry cannot be achieved.

– Structure degeneracy: If all the 3D points in the physical space
are coplanar, the fundamental matrix cannot be uniquely deter-
mined by the image correspondences themselves [23].

Both cases are common during the data collection of an infra-
structure scene. The first case happens since it is very common that
the videotaper stops for a while and just rotates the camera. It also
might happen if the videotaper changes his direction. The second
case happens in many cases that civil infrastructure scenes are
coplanar, e.g., a wall or a slab.

3. State of research

Several research undertakings have taken place in creating
videogrammetric pipelines to reconstruct 3D buildings and infra-
structure [24–26]. The authors in Brilakis et al. [21] created a
framework that exploits a binocular stereo camera system to pro-
gressively reconstruct an ongoing building structure. Fathi and
Brilakis [27] proposed a method to generate the sparse point cloud
of the scene from stereo images. These efforts are the basic steps
toward applying videogrammetry in 3D spatial sensing of civil
infrastructure. Considering the practical constraints (i.e., low frame
quality and video frame redundancy) encountered on site, a robust
videogrammetric method is needed. Fig. 2 depicts a pragmatic
videogrammetric pipeline built upon the existing methods. As
shown in Fig. 2, the processes of camera calibration, structure from



Fig. 2. Videogrammetric pipeline for 3D reconstruction.
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motion (SfM), and multi-view stereo (MVS) work with existing
techniques (i.e., white color boxes and ellipses). The focus of this
paper is methods (i.e., grey color boxes and ellipses) needed to ad-
dress the practical constraints mentioned above. Research related
to this area from computer science is presented in the following
sections.

3.1. Strategies for quality control of video frames

One challenge in processing video frames is to deal with the low
quality frames, which primarily are associated with motion blur
[28]. Motion blur is caused by camera shakes. Even slight shaking
may lead to serious blur effects. Normally, there are two strategies
for dealing with this problem.

The first strategy is image deblurring, which has recently re-
ceived much attention among the computer vision community.
Deblurring techniques could be divided into two main categories:

3.1.1. Hardware methods
The most common commercial method for reducing image blur

is image stabilization (IS). These methods, used in high-end lenses
and now appearing in lower-end point and shoot cameras, use
mechanical means to dampen camera motion by offsetting lens
elements or translating the sensor. Fundamentally, IS tries to dam-
pen motion by assuming that the past motion predicts the future
motion [29]. However, it does not counteract the actual camera
motion during an exposure nor does it actively remove blur – it
only reduces blur.

3.1.2. Software methods
For software methods, different algorithms are utilized to mod-

el motion blur. If a motion blur is shift-invariant, it can be modeled
as the convolution of a latent image with a motion blur kernel,
where the kernel describes the trace of a sensor. Then, removing
a motion blur from an image becomes a de-convolution operation.
In non-blind de-convolution, the motion blur kernel is given and
the problem is to recover the latent image from a blurry version
using the kernel. In blind de-convolution, the kernel is unknown
and the recovery of the latent image becomes more challenging.
Several methods were proposed to handle the motion blur problem
[30–32]. While these methods might produce excellent deblurring
results, they necessitate intensive computation. It usually takes
more than several minutes for the methods to deblur even a single
image of moderate size, making this method not applicable for
high volume applications.

The aforementioned hardware and software methods reflect the
state-of-the-art of current video processing techniques. However,
these methods are not feasible for use in infrastructure reconstruc-
tion applications considering their computational complexity [32].
Moreover, reconstructing infrastructure scenes only needs to pro-
cess a few frames rather than process every frame contained in a
video stream.

The second strategy involves removing blurred frames. Remov-
ing these frames relies on applying blur metrics that are capable of
measuring numerical values that represent the extent of the effect.
To measure the blur effect, the intensity change along edges was
extensively studied [33–35]. Such algorithms are easy to use for
predicting sharpness/blurriness of an image. However, evaluation
of these algorithms is mainly focused on widths of intensity edges,
which does not reflect completely the quality of the measured
images. To address this limitation, Chen and Bovik [36] established
a multi-resolution decomposition method capable of extracting
reliable features regarding image blurs. The advantage of this
method is all the pixels of an image are taken into account and
the estimate is more reliable. However, each time an image is as-
sessed; a training process of sample images is needed, imposing
extra work on the modeler.

Apart from the above methods, the BluM metric method [37] is
based on the human blur perception. It uses the blur discrimina-
tion properties of the human perception to create a reference im-
age for blur estimation, making this method simple yet practical.
Here, blur discrimination means that the human visual system is
capable of differentiating a blurred and a sharp image but cannot
accurately discern a blurred image with the one that is re-blurred.
By this method, the complete scene in the image is considered, and
the resulting scores are simply denoted by the numerical range
from 0 to 1 representing the worst blur and the best sharpness
of the image, respectively. Therefore, the BluM metric is a conve-
nient technique to measure the blur effect of video of an infrastruc-
ture, and its feasibility will be evaluated in this research. The end
result of this step is extracted high quality frames from a video
stream.

3.2. Strategies for key frame selection

Selecting a number of representative (key) frames from a large
video sequence is a key step for efficient and robust 3D reconstruc-
tion. The criteria that have been applied for key frame selection are
primarily focused on four aspects: (1) sufficient overlap, (2) suffi-
cient baseline, (3) degeneracy avoidance, and (4) minimized repro-
jection errors. Seo et al. [38] considered three criteria when
extracting key frames: (a) the ratio of the number of correspon-
dences to the number of features, (b) the homography error, and
(c) the distribution of correspondences over the frames. In their
method, the criterion (a) is used to ensure the sufficient overlap
of two frames, the criterion (b) serves as a good proxy for the base-
line distances between two views, and the criterion (c) is used to
increase the accuracy of calculating the fundamental matrices,
based on which to lead to higher accurate estimations of camera
motions and an object structure. Later on, Seo et al. [39] improved
their method in [38] to extract informative key frames by incorpo-
rating a fourth criterion: that the reprojection error of the recon-
struction process is minimized. Nonetheless, these methods did
not consider the degeneracy cases. In Pollefeys et al. [25], the
degeneracy problem is addressed by employing the Geometric Ro-
bust Information Criterion (GRIC) [40]. The next key frame is se-
lected only once the fundamental matrix model explains the
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relationship between the pair of images better than the homogra-
phy matrix model through the scores calculated by the GRIC [40].

In addition, Ahmed et al. [22] proposed another key frame
selection method which is based on the weighted score consider-
ing the GRIC difference and point to epipolar line cost. In their
method, they also use the correspondence ratio to indicate
whether long baseline and sufficient overlap between two frames
exist. Gibson et al. [41] proposed a method in which the sum of
three weighted addends of (1) the fraction of features that were
matched in the previous frame pair which cannot be matched in
the current pair, (2) the inverse of the square of the homography
error, and (3) the squared median epipolar error, is minimized to
selects the frames. Sufficient overlap, sufficient baseline, and
degeneracy avoidance are ensured in their method. Thormahlen
et al. [42] proposed a criterion for the selection of key frames with
the lowest expected estimation error of initial camera motion and
object structure. At the same time, their method utilized the GRIC
to guarantee a sufficient baseline, overlap, and avoid degeneracy
cases.

In summary, the above discussed methods are able to guarantee
a long enough baseline, sufficient overlap, no degeneracy cases,
and minimized reprojection errors of 3D reconstruction. However,
these research efforts have not taken into account an optimized
number of required frames for processing. Besides, the practical
constraints (i.e., speed of camera movements, complexity of the
scene) also significantly impact the key frame selection algorithms,
and they have not been addressed by the existing research, as there
was no need to do so in other application domains. Videotaping
large, outdoor, infrastructure scenes poses these additional unique
challenges that must be addressed for videogrammetry to be feasi-
ble for surveying of civil infrastructure.

4. Problem statement and objectives

While videogrammetry has been conceptually proven to be via-
ble for collecting spatial data of civil infrastructure [21,43], two
major issues have not been holistically addressed. The first is the
question of how to deal with low quality (i.e., blurry) image frames.
Poor quality frames result mainly from motion blur, which is a
common issue in videotaping civil infrastructure scenes. Not only
do these poor quality image frames significantly increase the
reprojection errors in a 3D reconstruction pipeline, in the worst
cases, they can also potentially lead to failure if a sufficient number
of feature points cannot be extracted from these blurry frames
(Fig. 3).

The second major issue concerns the sheer size of the video files
collected via video recording. As the number of frames increases,
the computation costs of the videogrammetric pipeline exponen-
tially increase. For example, capturing a 5 min video clip using a
25 fps camcorder, which is common to off-the-shelf cameras, will
Fig. 3. Impact of blur effects on the numbers of extracted feature points: 1107 feature poi
result in 7500 frames. Obviously, processing every frame would
be costly in terms of computational time and complexity. In civil
infrastructure applications, only a small portion of these frames
(e.g., 5–15%) are necessary to generate high quality dense point
clouds of scenes. Hence, instead of processing all frames of a video
or uniformly selecting a number of frames based on the capturing
rate, creating an automated algorithm for selecting a number of
informative, high quality frames is vital.

As mentioned previously, several researchers have proposed
algorithms for selecting key frames. In their research, criteria
which theoretically affect a videogrammetric pipeline (length of
base line, sufficiency of overlap, degeneracy avoidance, and mini-
mized reprojection errors) were taken into account. However, none
of these methods considered the blur as an obstacle. There is also a
lack of an optimization strategy in current key frame selection
methods. Though current key frame selection methods reduce
the number of frames, there is no guarantee that the number of ex-
tracted frames is optimum. If the number of extracted frames is
less than the number required, it is not possible to generate a high
quality point cloud. On the other hand, processing unnecessary ex-
tra frames is redundant and time consuming.

To fill in the gaps mentioned above, the objective of this paper is
to propose an innovative key frame selection algorithm tailor made
for use in the civil infrastructure domain. The proposed algorithm
not only tackles common issues that occur while running a 3D
reconstruction pipeline, but also addresses two major practical
problems, i.e., low video quality, and optimization of the number
of extracted key frames. Also, this paper intends to evaluate the
impact of applying the key frame selection algorithm on the vide-
ogrammetric pipeline.

5. Automated key video frames extraction: Methodology

This paper presents a novel method of selecting key frames for
the purpose of robust 3D reconstruction of infrastructure objects.
The proposed method takes into account six significant factors
for creating the optimal key frame selection algorithm: high qual-
ity frame extraction, determining sufficient overlap between adja-
cent frames, determining baseline length, data degeneracy
avoidance, uniform distributions of features in each frame, and
the optimization of the number of the extracted key frames. Con-
sidering that the existing key frame selection criteria have been
well established in dealing with the first four factors listed, this pa-
per does not intend to re-address these factors. Instead, this paper
adopts these factors and expands the key frame selection pipeline
by incorporating the factors of: uniform feature distribution, and
optimized number of key frames extracted for the video footage.
The main contribution of this paper is the creation of these two
new elements for the purpose of augmenting the existing key
frame selection algorithms.
nts for a high quality frame (left) versus 104 feature points for a blurry frame (right).
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Fig. 4 shows the main workflow of the proposed key frame
selection algorithm. This algorithm first ensures that a sequence
of high quality video frames is obtained, and starts with marking
the first frame from the sequence as a key frame. From there, a
number of subsequent frames are nominated as key frame candi-
dates depending upon sufficient overlaps and baseline lengths.
Among these candidates, those that lead to degeneracy cases and
large re-projection errors are also removed. Finally, the most suit-
able candidate is selected as the next key frame based on the uni-
form distribution of features over the frame. This selection process
is then repeated, this time with the newly selected key frame as
the starting key frame; this continues through the length of the vi-
deo footage. Next, the algorithm examines whether the number of
the extracted frames is optimized (i.e., the number falls in an opti-
mum range). If yes, the algorithm terminates and exits. Otherwise
the algorithm applies a linear programming method to update the
parameters of the baseline and overlap criteria, and repeat the
selection process. We present the detail of the algorithm in the
following.

Input: High quality video frames: In order to address blurry video
frames, we follow a low quality frame filtering approach. We uti-
lize the BluM metric [37] to measure the quality of frames and re-
move the blurry ones.
Optimized Number of Key 
Frames?

“Overlap+Baseline” Filtering

Yes

Yes

No

“Degeneracy” Filtering

Selection of Final Candidate

Last Frame?

Modified “Overlap+Baseline” 
Filtering

3D Reconstruction Pipeline

No

High Quality Video 
Frames

3D Dense Point 
Cloud

Candidate Frames

Refined Candidate 
Frames

Next Key Frame

Fig. 4. Workflow of the key frame selection algorithm.
Step1: Overlap and baseline filtering: Once the first frame has
been selected as a key frame, it is necessary to select a number
of consecutive frames as key frame candidates. The selection crite-
ria must guarantee both enough baseline and sufficient overlap be-
tween the candidates and the first key frame. To achieve this goal,
we use the correspondence ratio defined by Seo et al. [39] and
Ahmed et al. [22].

Step2: Degeneracy filtering: In order to avoid degeneracy cases,
we follow a similar strategy suggested by Torr and Pollefeyes
[40] by calculating GRIC scores. Using GRIC score also assists the
pipeline in retaining frames with minimal re-projection errors.

Step 3: Selecting the next key frame: After filtering a number of
frames from the video stream, the next step is selecting the final
candidate among the remaining frames. While using both the fun-
damental and homographic matrices we realized that the ratio of
inliers to total number of feature points was an accurate indicator
of how compatible two frames were modeled using these two
matrices [44]. In addition, this realization correlated with the
knowledge that evenly scattered correspondence points between
the candidate frame and the key frame were desirable for achiev-
ing a more accurate fundamental matrix. This improved matrix
could then, in turn, be used to compute a more accurate structure
model. Considering this positive relationship, we propose the fol-
lowing procedure for selecting the next key frames from the possi-
ble candidates.

After calculating the fundamental and homography matrices
between the candidates and the key frame using RANSAC, we cal-
culate the percentage of inliers to the total number of correspon-
dences. Then we calculate the S score to select the final candidate:

S ¼ ð1� rÞ SF � SH

SF
ð1Þ

where SH is the percentage of inliers for calculating the homography
matrix; SF is the percentage of inliers for calculating the fundamen-
tal matrix, and r is the standard deviation calculated from measur-
ing how uniform the distribution of features is over the frame. To
calculate the r, the frame is divided into sub-regions. The point
density for sub-regions and the entire frame are calculated sepa-
rately. Then, the standard deviation is calculated using the follow-
ing equation:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn

i¼1
Ni �

N
n

� �2
s

ð2Þ

where Ni and N are number of features in each sub-region and the
entire frame respectively; n is the number of sub-regions. The frame
with the highest S score will be chosen as the next key frame
(Fig. 5).

Step 4: Optimizing the number of key frames: The difference be-
tween our method and those of previous researchers lies in the
optimization of the number of extracted key frames required for
use in the 3D reconstruction pipeline. First, we define the corre-
spondence ratio as follows:

R ¼ Rc

RT
ð3Þ

s1 < R < s2 ð4Þ

In Eq. (3), Rc is the number of correspondence points between the
key frame and the next candidate while RT is the total number of
feature points in the first key frame. In Eq. (4), s1 and s2 are the low-
er and upper thresholds of R. R is inversely proportional to the
length of camera motion since, as the camera moves, features tend
to leave the scene. Researchers in computer vision have usually set
fixed thresholds for s1 and s2 based on experiments conducted on a
few datasets. However, it is not ensured that an optimum quantity
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of key frames can be selected. In our case, instead of assigning fixed
values as the upper and lower thresholds, we define a specific range
for each one based on three important factors: desired number of
extracted key frames, approximate speed of camera while travers-
ing, and complexity of the civil infrastructure scene.

Given a defined set of ranges for the upper and lower thresh-
olds, we use a linear programming method (Eqs. (5) and (6)) to
optimize the number of the required frames:

Goal : P1 6 P 6 P2 ð5Þ

Constraints :
slmin � s1 � slmax

sumin � s2 � sumax

� �
ð6Þ

In Eq. (5), P is the percentage of key frames over the entire number
of frames existing in the sequence and P1 and P2 define the opti-
mum range for the percentage of the number of key frames. The
optimum range for the number of key frames is pre-defined based
on the capturing rate of the camera, and movement speed of the vi-
deo taper. In Eq. (6), slmin, slmax, sumin and sumin are acceptable ranges
for the upper and lower thresholds which can be obtained through
experiments in various scenarios. Fig. 6 shows the relationship be-
tween the number of frames and correspondence ratios. As dis-
cussed earlier, the correspondence ratio is inversely proportional
to the number of total frames in the sequence.

Given P1, P2, slmin, slmax, sumin and sumin are known, the algorithm
uses the average values of slmin, slmax, sumin and sumin as the upper
and lower limits (Eq. (7)) for the first round in selecting a set of
key frames. The upper and lower limits are used to specify the
parameters of the baseline and overlap selection criteria.
No. of frames 

   
   

 C
or

re
sp

on
de

nc
e 

R
at

io
 

τlmin

τlmax

τumax

τumin

Fig. 6. Acceptable ranges for upper and lower correspondence ratio thresholds.
slðfirst tryÞ ¼
slmin þ slmax

2

suðfirst tryÞ ¼
sumin þ sumax

2

ð7Þ

Then, the optimization begins with checking whether the number
of key frames for the first round is within the acceptable range,
i.e., between P1 and P2. If not, the algorithm will run again. This
time, the parameters of the baseline and overlap criteria will be ad-
justed based on Eqs. (5) and (6) with the current number of ex-
tracted key frames. The procedure will be repeated until an
acceptable number of key frames is achieved. The result is an opti-
mum number of key frames that can be used for processing within
the 3D reconstruction pipeline. It is necessary to mention that since
the feature points and their matching information for each frame in
the video sequence already exist, repeating the search for a new set
of key frames is not computationally expensive.
6. Implementation and results

A C# based prototype was implemented to test the validity of
the proposed key frame selection algorithm and the videogram-
metric pipeline. It was written in Visual Studio 2010 using Win-
dows Presentation Foundation (WPF) and publicly available
libraries such as OpenCV 2.0 (wrapped by EmguCV) for access to
computer vision tools and DirectX 10 for the graphic display of re-
sults. The Open CV’s image structure was the primary data struc-
ture. It removed the conversion needs of the image processing
tools from that library, which drastically reduced the processing
speed.

As the first stage of implementing the videogrammetric pipe-
line, we used the camera calibration method proposed by Zhang
[45] to extract the intrinsic parameters of the camera accurately.
As the next step, feature points on different frames must be ex-
tracted and matched. SIFT and SURF are two well-known feature
detectors and descriptors among the computer vision community
[27]. Due to higher dimensionality of descriptors, SIFT outperforms
SURF in terms of the number of extracted feature points; however,
SURF algorithm is computationally more effective. Selecting the
most appropriate feature detector is a trade-off problem between
computational costs and number of extracted features. A number
of studies have been conducted to compare the performance of
the two algorithms. Fathi and Brilakis [27] reported that for a num-
ber of civil infrastructure video frames, the average number of
extracting feature points using SIFT is 31% greater than SURF. They
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Fig. 7. Samples of correspondence ratios for different video streams.
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Fig. 8. Impact of camera speed on corresponding ratio: Arch bridge scene.
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also mentioned that the average runtime of SIFT was 4.34 times of
that for SURF [27]. In our research, we used SURF as the feature
detector since computational efficiency was the more significant
issue in processing sheer volumes of video frames.

As the next stage, the camera motion, i.e., camera translation
and rotation, as well as the 3D coordinates of the feature points
were computed through a procedure known as Structure from Mo-
tion (SfM) [44,46]. Considering the fact that there is sufficient base-
line and adequate overlap between consecutive key frames, the
SfM starts with processing of the first two key frames. Then the
5 point algorithm, proposed by Nister [47,48], is used to calculate
the motion of the camera (extrinsic parameters) between these
two frames. Next, corresponding feature points in these two views
are triangulated, followed by the Sparse Bundle Adjustment [49].
Once this is done, the next key frame is added to the process.
The extrinsic parameters of the camera associated with the new
key frame are computed using the direct linear transform (DLT)
technique inside a RANSAC procedure and points observed by the
new frame are added to the process [44]. Finally, a global Sparse
Bundle Adjustment is run to refine the results and minimize the
propagated errors. This procedure proceeds until the last key frame
is processed. Then, the extrinsic parameters derived from SfM
along with the intrinsic parameters obtained from the calibration
step, are fed to the Patch-based Multi-View Stereo (PMVS) [50]
algorithm to generate the dense point cloud.

Considering the variety in civil infrastructure scenes, we cap-
tured 25 video streams from eight different scenes, i.e., two high-
way bridges, three campus buildings, one residential building,
one sport facility, and one concrete water reservoir. The lengths
of the video streams varied from 4 to 10 min. To validate the
degeneracy cases, we captured some video streams that contain
planar scenes such as walls, and in some cases during the process
of capturing videos, the videotaper intentionally stopped for a
while and the camera was simply rotated without any translations.

6.1. Identifying threshold for low quality frame filtering

The first step of applying the frame quality control filter is iden-
tifying the BluM metric threshold [37]. The threshold is used for
determining the frames that have to be removed. If the measured
value of a frame obtained by using the metric is larger than the
threshold, the frame is removed. Otherwise, it is retained. In deter-
mining the threshold, the criterion is that a minimum level of
frame quality required to obtain robust results be ensured. To
achieve this, a sample set of satisfactorily high quality images
(20 from each video stream) were selected through human obser-
vations. According to Sheikh et al. [51], an obvious way of measur-
ing the quality of an image or video is to solicit opinion from
human observers. Applied with the blur metric, the sample set of
frames resulted in the sample mean 0.283, and the sample stan-
dard deviation 0.01 of the metric evaluation scores. The left-sided
95% confidence limit for a normal distribution was then used to
determine the statistical estimate of the threshold as
0.283 + 1.64 � 0.01 = 0.299. This means that with 95% likelihood,
any ‘‘satisfied’’ image would have a score measured by the pro-
posed metric of no more than 0.299. It is noted that the sample size
is statistically significant to the threshold analysis in consideration
of the expected accuracy level being in the order of 0.001 and the
relatively small variation on the sample standard deviation of the
resulting scores [52].

6.2. Identifying thresholds for key frame selection

In order to implement the key frame selection algorithm,
the values of the thresholds depicted in Eqs. (3) and (4) have
to be determined. Fig. 7 shows the relationship between the
correspondence ratio and the number of frames for a number of
captured video streams from various civil infrastructure scenes.
As shown in Fig. 7, rapid changes in R might occur at different
points. From the experiments on civil infrastructure scenes, we
inferred that the changes in the correspondence ratio mainly
depended on two factors:

– Speed of camera movements: It is difficult to measure the real
speed of a camera when it was traversing around the jobsite.
However, considering 25 fps as a common rate for a regular
video camera, we defined two categories for camera movement
speed:
� Normal movement: The videotaper traversed with the hand-

held camera at a speed of more than around 0.7 m/s (one
step per second).

� Slow movement: The videotaper traversed with the hand-
held camera at a speed of less than around 0.7 m/s.

As an example, the correspondence ratios for a number of frames of
a sample infrastructure video clip, in both cases of normal and slow
movements, are presented in Fig. 8.

– Uniformity of the scene: Some of civil infrastructure scenes con-
tain uniform texture, such as curtain walls or exposed concrete
surfaces. On the other hand, some other civil infrastructure
scenes contain complex variable texture. The correspondence
ratio declined rapidly in complex scenes where the texture of
the scene changed rapidly. However, in relatively uniform
scenes, e.g., curtain walls or exposed concrete surfaces, the
changes were relatively slow. Given these observations, scenes
were defined as either complex or uniform.

Other than uniformity in the texture of different surfaces, factors
such as reflection or transparency might also affect the results in
terms of numbers of extracted feature points, values in correspond-



Table 1
Upper and lower thresholds for correspondence ratios.

Complexity of
the scene

Camera
motion speed

Lower threshold
(slmin–slmax)

Upper threshold
(sumin–sumax)

Complex Normal 0.85–0.7 0.55–0.4
Uniform Normal 0.8–0.65 0.5–0.35
Complex Slow 0.75–0.6 0.4–0.3
Uniform Slow 0.8–0.65 0.45–0.3
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ing ratios, and accuracy of the feature point matching algorithm. It
is well known that reflective or transparent materials, such as glass,
have a negative impact on the overall performance of the 3D recon-
struction algorithm. Assessing the impact of these categories of sur-
faces on the performance of 3D reconstruction algorithms is a
potential topic for future research.

Based on the above mentioned different scenarios, the ranges
proposed in Table 1 are used as acceptable ranges for upper and
lower thresholds.

As the next step, the optimum range of the number of frames
should be estimated. Infrastructure scenes could be reconstructed
using various numbers of frames. Obviously, this is a trade-off
problem. Processing more frames results in higher quality point
clouds with higher computational costs. In this research, in order
to find the optimum number of frames required for processing, dif-
ferent numbers of key frames were extracted and processed for dif-
ferent video streams captured in one specific scene, i.e., a concrete
highway bridge. The completeness of the generated dense point
clouds from different numbers of key frames were calculated using
a method explained later. The results of measuring completeness
rates for different numbers of key frames from one video sequence
with capturing rate of 25 fps are illustrated in Fig. 9.

Based on Fig. 9, for a capturing rate equal to 25 fps, the maxi-
mum density of a point cloud is achievable by processing a small
selection of frames (7–11%), indicating that processing more
Percentage of the number of key frames versus the total number of frames
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Fig. 9. Completeness of generated dense point clouds versus the percentage of the
extracted key frames to total number of frames.

Table 2
Optimum ranges for the percentage of number of key frames to total number of
frames.

Capturing rate (fps) Optimum ranges for ratio of number of key frames to
total number of frames (%)

P1 P2

Up to 5 25 75
6–10 15 50
11–15 10 25
16–20 8 15
21–25 7 12
frames is redundant. By conducting the same experiments on eight
different civil infrastructure scenes with different video capturing
rates, optimum ranges for number of key frames for civil engineer-
ing scenes are suggested in Table 2.

It is necessary to mention that the proposed optimum ranges
are based on experiments on a limited number of civil infrastruc-
ture scenes; and in other specific scenes these values might be
slightly different.

6.3. Validation of the proposed method

The validation procedure focused on two aspects:

1. Comparing the performance of the key frame selection algo-
rithm with other existing methods, and

2. Evaluating the quality and accuracy of generated point clouds
obtained from the videogrammetric pipeline, with and without
using the proposed key frame selection algorithm.

Step 1: Validating the key frame selection algorithm: We firstly
qualitatively evaluated the impact of blur effects on the results of
3D reconstruction. To this end, the frames from the video of a high-
way bridge were artificially blurred. Then, the blurred frames were
passed into the reconstruction pipeline. For each case, the BluM va-
lue, the number of extracted and matched feature points, and
reprojection errors were computed. As an example, six sample
blurred frames are illustrated in Table 3. As observed, in all cases,
blur has a significant effect on the number of extracted features
and reprojection errors; in most cases, the number of features ex-
tracted from the blurred frames was not even sufficient to recon-
struct the scene.

In the next step, we measured the performance of the proposed
key frame selection algorithm. A number of key frames were ex-
tracted from each video sequence using our key frame selection
algorithm and the methods developed by [25,40,42]. In addition,
a number of frames equal to the number of key frames by our
method were selected at equally distributed intervals without
using any key frame selection method. These extracted key frames
were processed in the videogrammetric pipeline and the percent-
ages of failure cases as well as reprojection errors for successfully
reconstructed cases of each method were computed. The obtained
results are summarized in Table 4.

As evident from Table 4, our method outperforms all other
methods in terms of failure cases and average re-projection errors.
The only exceptional case is that the Thormahlen method gener-
ates a lower average re-projection error than our method. How-
ever, in this specific case, the number of extracted key frames by
our method is within the desired range. Despite the fact that our
method is slightly more time consuming in the phase of key frame
selection, the optimized number of extracted key frames drasti-
cally reduces the computational time of post-processing, and
thereby optimizes the entire efficiency of the videogrammetric
pipeline.

Step 2: Validating the videogrammetric pipeline: The second phase
is to test the performance of the entire videogrammetric pipeline.
To this end, a reinforced concrete bridge located on the intersec-
tion of Boat Rock Road SW and Camp Creek Parkway, Atlanta, GA
was selected as the test-bed for the experiment. It is a four-span
bridge with three rows, and each row contains three rectangular
columns (Fig. 10).

In order to evaluate the impact of the proposed key frame selec-
tion algorithm on the performance of the videogrammetric pipe-
line, we planned on two scenarios as described in the following:

1. Evaluating the pipeline with the proposed key frame selection
algorithm implemented, and



Table 3
Impact of blur on number of extracted feature points and reprojection errors.

BluM
value

Number of
extracted feature
points

Number of
matches

Reprojection
error

BluM
value

Number of
extracted feature
points

Number of
matches

Reprojection
error

0.259 2984 657 0.0225 0.622 1017 316 0.0548

0.329 2562 579 0.0394 0.655 299 107 0.0751

0.465 2077 474 0.0423 0.704 147 24 0.132

Table 4
Failure percentages and re-projection errors for different key frame extraction methods.

Method Average failure
percentage (%)

Average reprojection
error

Average number of
extracted key frames

Running time (h)

Key frame selection 3D reconstruction

1 Uniformly extracted frames 54.54 0.0754 432 – 12
2 Pollefeys et al. [25] 36.36 0.0358 619 0.02 21
3 Thormahlen et al. [42] 27.27 0.0208 509 0.05 15
4 Seo et al. [39] 45.45 0.0439 573 0.07 18
5 Our method 22.72 0.0275 432 0.14 12
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2. Evaluating the pipeline by selecting the same number of frames
as obtained from the key frame selection algorithm but based
on equally distributed intervals.

In collecting the on-site videos, we used an off-the-shelf Canon Vix-
ia HF S100 with its resolution set at 2 MP. The camera was cali-
brated using Bouguet’s camera calibration toolbox [45]. Then by
applying the videogrammetric pipeline, dense point clouds of the
bridge were generated. Fig. 11 shows a snapshot of a generated
dense point cloud using the pipeline with the key frame selection
algorithm incorporated.

There are some clarifications regarding the use of PMVS in gen-
erating the point clouds. In order to effectively run the algorithm, a
Fig. 10. Snapshot of the test-bed bridge taken from the distance 55 m.
number of parameters should be adjusted. Except for the following
two parameters, the authors used the pre-defined values suggested
in [50] for setting of the PMVS parameters:

– MaxAngle: This parameter defines the maximum acceptable
angle between two visible cameras. We changed the predefined
value, i.e., 10�, to 8� to improve the reconstruction process for
the scenes located far from the camera (which is the case for
several civil infrastructure scenes).

– Sequence: The PMVS algorithm is primarily designed for use
with unordered images. In the case of using sequential key
video frames it is possible to narrow down the reconstruction
process to only a few consecutive frames. We set this parameter
to 7 so only 7 frames before and 7 frames after the target frame
are considered for.

As shown in Fig. 11, there might be some gaps or outliers associated
with generated the point clouds. This might be the result of several
factors including:
– Specific views of the scene are not fully covered during video-

taping or extracting the key frames.
– Surfaces of concrete members are generally texture-less, mak-

ing the reconstruction procedure more challenging.
– Assigned values to the PMVS parameters, e.g., MaxAngle, patch

size or cell size are not optimum. More information could be
found at [50].

– Environmental and hardware parameters such as lens distor-
tions or occlusions might have negative impact on the perfor-
mance of the 3D reconstruction algorithm.



Fig. 11. Snapshot of produced dense point cloud.
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Along with the video capturing, a SOKKIA Series 30R reflectorless
total station was used for collecting data as the ground truth
(Fig. 12a). As a result, around 2000 points on the surfaces of the
bridge were captured and their spatial coordinates were derived.
These points were then rendered into a surface model for this
bridge by exploiting the surface reconstruction Poisson algorithm
[53], which generates a water-tight surface given the spatial points
and each of their normal vectors, as shown in Fig. 12b.

Automated generation of surfaces using 3D points might be a
challenging task. In this research, since the points are collected
by total station as ground truth for validation purpose, there were
no outliers involved in the surface model reconstruction. In order
to rendering the 3D ground truth model of the bridge, each surface
element is automatically generated followed by a manual process
of stitching all surfaces into a model based on the priori knowledge
of geometric relationships (i.e., parallel, perpendicular, coincident)
of those elements.

Automated generation of surfaces using 3D points might be a
challenging task. In this research, since the points are collected
by total station as ground truth for validation purpose, there were
no outliers involved in the surface model reconstruction. In order
to rendering the 3D ground truth model of the bridge, each surface
element is automatically generated followed by a manual process
of stitching all surfaces into a model based on the priori knowledge
of geometric relationships (i.e., parallel, perpendicular, coincident)
of those elements. Fig. 13 shows an example of the registration
results.
Fig. 12. (a) Using a total station to collect ground truth data and (b) t
In order to measure the accuracy of the point clouds, the Euclid-
ian distance (error) from the point to the surface of the ground
truth model where the point was supposed to be located was con-
sidered the metric to measure the accuracy. We denoted the ith
point’s coordinate as ðXj

i; Yj
i; Zj

iÞ; it was supposed to lie on the jth
surface of the ground truth bridge model, as ajX + bjY + cjZ + dj = 0.
The average error of the point cloud could accordingly be calcu-
lated as follows:

err ¼ 1Pn
j¼1mj

Xn

j¼1

Xmj

i¼1

ajX
j
i þ bjY

j
i þ cjZ

j
i þ dj

��� ���ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2

j þ b2
j þ c2

j

q ð8Þ

In this equation, mj is the number of points supposed to belong to
the jth surface, and n is the number of surfaces.

For each surface, 4 boundary offset planes are defined and
points fall within this space are supposed to belong to this surface.
If a point’s distance to the surface is far beyond the average value, it
will be deemed as an outlier and removed from the testing data set.
More information about the procedure of measuring accuracy can
be found at [3].

In order to measure the completeness of the generated point
clouds, different surfaces of the bridge model were divided into
2.5 cm � 2.5 cm squares. For each square, if a corresponding 3D
point existed, that area was considered a successfully recon-
structed region. By calculating the percentage of successfully
reconstructed areas, the completeness of the generated point cloud
he actual surface model of the bridge built on ground truth data.



Fig. 13. Registration of the generated dense point cloud into the ground truth model.

Table 5
Average errors and completeness rates for the generated point clouds.

Method Proposed
method

Uniform distributed
intervals

Pollefeys et al.
[25]

Thormahlen et al.
[42]

Seo et al. [40]

Number of video clips 12 12 12 12 12
Number of failure in 3D reconstruction 1 5 1 2 4
Average number of frames per sequence 4500 4500 4500 4500 4500
Average number of extracted key frames per

sequence
481 481 682 591 786

Average error (cm) 6.28 7.79 6.34 6.12 7.42
Variance of Euclidian distance error (cm) 2.87 2.96 2.76 2.49 3.68
Average completeness rate (%) 77.43 72.08 76.59 77.76 78.02
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was accordingly measured. The obtained results of accuracy and
completeness for different point clouds, as well as the number of
failure cases are summarized in Table 5.

Based on the results in Table 5, we observe that for the video-
grammetric pipeline, using the proposed key frame selection algo-
rithm significantly reduces failure risks in generating point clouds.
For this specific scene, the number of failure cases was reduced
from 5 to 1. We also observe that by applying the proposed key
frame selection algorithm, the average accuracy and completeness
of the generated point clouds were increased by 24% and 7.5%
respectively. These results demonstrate the efficiently of the pro-
posed method.

7. Conclusion

Video clips captured from civil infrastructure sites contain a
large volume of blurry, noisy, or redundant frames, which can sig-
nificantly affect the performance of the videogrammetric pipeline.
This problem is associated with several factors, e.g., lens distor-
tions, motion blur, and high speed rates of frame capturing. As a re-
sult, filtering redundant, low quality frames and selecting an
optimized number of informative high quality frames is a challeng-
ing task. This paper presented a novel method for extracting high-
quality, informative frames from a video stream. The resulting key
frames could be fed into the videogrammetric pipeline to effec-
tively generate dense point clouds of civil infrastructure. The pro-
posed algorithm automated the processes of removing blurry
frames and selecting a number of frames in a way by which com-
putational efficiency was achieved and common degeneracy cases
were minimized. The experimental results revealed that the
proposed key frame selection algorithm eclipsed the existing
methods at a relatively high successful rate of the 3D reconstruc-
tion, while maintaining the best reprojection accuracy. In addition,
applying the proposed key frame selection algorithm significantly
reduced the risk of failure in the 3D reconstruction pipeline. In
addition, this study validated the performance of the proposed
key frame selection algorithm within the entire videogrammetric
pipeline in terms of the accuracy and completeness of the resulting
3D point clouds.

Selection of high-quality and informative frames from a long vi-
deo sequence is mandatory in order to achieve the satisfactory per-
formance of the 3D videogrammetric reconstruction. By applying
the proposed key frame selection algorithm within the videogram-
metric pipeline, we achieved up to 6.28 cm accuracy as well as
77.4% completeness. This level of accuracy and density have the
potential for a number of practical applications in the AEC domain,
including rapid/comprehensive emergency building assessment,
remote visual inspection, as-built documentation, safety and pro-
ductivity analysis and progress monitoring.

In order to improve the accuracy and completeness of generated
point clouds, two approaches should be taken into account:

– Hardware improvement, e.g., using cameras with higher resolu-
tions and high quality lenses.

– Software improvement, e.g., utilizing improved algorithms for
extracting feature points, effective matching, camera motion
estimation and optimizations.

As the next step of this ongoing research project, we plan to
investigate the impact of different practical settings, i.e., various
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types of cameras and lens, resolution configurations and data col-
lection distances on the performance of the videogrammetric pipe-
line. In addition, a natural extension of this research is the
comparison of the proposed videogrammetric method with the
other existing vision-based reconstruction algorithms. The factors
that influence the accuracy of applying videogrammetry will also
be meticulously investigated in order to lend this technology effec-
tively to broader applications in civil infrastructure scenes. An-
other extension that will take place is the utilization of the
recognition techniques and contextual information for the detec-
tion of the detailed information of the scene. Recognition of impor-
tant structural object has utility in terms of removing cluttering
scene structure and irrelevant points from the reconstructed 3D
point cloud, thereby more effectively modeling the infrastructure
object of interest. Furthermore, from the observation of the ob-
tained point clouds (e.g., Fig. 10), the completeness of the 3D sur-
face of an object needs further improvement (e.g., fixing the gaps
on the surfaces of the point cloud of the bridge).
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