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Vision-Based Tower Crane Tracking for Understanding

Construction Activity
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ABSTRACT

Visual monitoring of construction work sites through the installation of surveillance cam-

eras has become prevalent in the construction industry. These cameras also have practical

utility for automatic observation of construction events and activities. This paper demon-

strates the use of a surveillance camera for assessing tower crane activities during the course

of a work day. In particular, it seeks to demonstrate that the crane jib trajectory together

with known information regarding the site plans provides sufficient information to infer the

activity states of the crane. The jib angle trajectory is tracked using 2D-3D rigid pose track-

ing algorithms. The site plan information includes a process model for the activities and site

layout information. A probabilistic graph model for crane activity is designed to process the

track signals and recognize crane activity as belonging to one of the two categories: concrete

pouring and non-concrete material movement. Experimental results from a construction

surveillance camera show that crane activities are correctly identified.

Keywords: Construction, Tower Crane, Visual Tracking, Activity Understanding

INTRODUCTION

Many construction projects involve the coordination and cooperation of multiple entities

in order to achieve the final as-built structure. Failure to properly coordinate leads to losses,

which can be ultimately measured in terms of cost, productivity, and possibly safety. Before
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coordination and cooperation of the construction site entities can be analyzed, tracking

and activity analysis of the individual entities is required (Gong and Caldas 2009). The

goal of this investigation is to understand tower crane operations in order to eventually

connect them to construction progress on the work site, and also to ultimately understand

the coordination of activities related to the tower crane. The tower crane is chosen as the

track entity because of its prominent and consistent visual geometry, and its important

role in construction projects. In order to advance the goal, algorithms to track both the

crane jib and to connect the motion to activities are needed. Output of the automated

algorithms provides information regarding the activities supported by the tower crane and

their execution over time. Longer term, these activities could be connected to progress on

the physical as-built structure.

The activity information sought is most closely aligned with the field of activity or pro-

ductivity analysis (CII 2010). Such analysis is performed through a variety of techniques

such as work sampling, direct observation techniques, checklists, and survey/interview based

methods (Oglesby et al. 1989; McCullouch 1997; Thomas 1991). These assessments types

are typically performed by qualified humans and can be inherently error-prone or subjective.

Ultimately, the intent is to identify the activities being performed at the measurement time

instants in order to build statistics regarding activity levels. The activity level is defined as

the percentage of time craft workers spend on a particular activity. Productivity is mea-

sured as the direct work time rate. Computing these statistics requires the collection of

activity and timing data regarding the various activities of interest. The efforts involved in

manually collecting the measurement data means that continuous monitoring is infeasible.

New information and sensing technologies provide a manner to generate a steady, reliable,

and consistently interpreted data stream of construction processes. Videotaping is one such

technology, whose potential and benefits for collecting data on job-sites has been extensively

studied (Abeid and Arditi 2002; Bolivar and Mee 1997). Unfortunately, recorded video often

requires manual review, which is an inefficient process. Automating the conversion of video
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into activity data requires advanced pattern recognition and computer vision techniques

tailored to the construction context (Navon and Sacks 2007).

Within the general construction context, research conducted to address automated sens-

ing challenges includes the following. Digital color image processing algorithms have been

designed to detect the idle time of a hydraulic excavator in a specific site environment (Zou

and Kim 2007). Wireless cameras have been used to measure productivity for a bridge re-

placement project (Kim and Bai 2007). In addition, automated vision tracking techniques

have been studied to provide spatial information of construction resources for specific con-

struction operations. Research involving visual tracking on work-sites includes the tracking

of personnel, of excavator end effectors, and of concrete buckets (Brilakis et al. 2011; Gong

and Caldas 2009; Makhmalbaf et al. 2010; Teizer and Vela 2009; Yang et al. 2010). In (Gong

and Caldas 2009), a machine learning algorithm was trained to detect the crane bucket in

video footage. By analyzing the bucket location in the image using prior knowledge of the

scene, they measured the productivity of a concrete pouring project. Follow-up work in

(Gong and Caldas 2011) demonstrated activity decomposition results for other construction

activities. Outside of vision, other sensor-based technologies show potential applications for

assisting automated productivity measurement on material installations (Cheng et al. 2011;

Grau et al. 2009; Grau and Caldas 2007) and construction process tracking (Pradhan and

Akinci 2007; Pradhan et al. 2011).

With regards to cranes, past research has focused on improving productivity and safety.

Luo et al. (Luo et al. 2011) examine the sensing requirements associated to crane safety

monitoring. Everett and Slocum (Everett and Slocum 1993) introduced a video system called

CRANIUM to transmit a real time picture of the loads to the operator for improved com-

munication. Shapira et al (Shapira et al. 2008) designed a tower-crane-mounted live video

system to enhance the visibility of the operator for both daytime and nighttime operation.

Other researchers (Abdelhamid and Everett 1999; Ju et al. 2005; Tantisevi et al. 2008;

Zavichi and Behzadan 2011) focus on optimizing the location of tower crane and materials
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in the construction site, optimizing the crane task ordering, or improving the crane control

to restrain the sway and swing.

The current objective of this paper is to demonstrate that a monocular surveillance

camera capable of monitoring a tower crane and its operational environment can be used

to automatically identify the activities associated to the tower crane. Activity level reports

follow directly from the timing statistics of the activity information. Rather than focus

on detecting a specific load carried by the tower crane as in (Gong and Caldas 2009), this

investigation focuses on the connections between the crane jib signal and both the site

layout and the construction process model. Visual tracking of the crane jib is chosen over

load detection since a tower crane transports a variety of objects, including, but not limited

to, concrete buckets, equipment, beams, slabs, columns, etc. Furthermore, given the setup of

a general purpose surveillance camera, c.f. Figure 1(a), the crane bucket may not always be

visible or may be in poor visibility. Lastly, while tracking via vision is a focus, the proposed

activity inference approach allows for trajectory information from other means to be used in

lieu of vision. In this last case, visual detection of the load category may not be available,

yet the proposed approach would still apply as it relies on other available information.

This paper demonstrates that trajectory information of the crane jib in conjunction with a

process model and a site layout plan is sufficient to infer the construction activities associated

to a tower crane. The two main steps are the tracking of the crane and estimation of the

activities. A model-based visual pose estimation algorithm will track the jib angle versus

time (Section 3). The activities of the tracked tower crane will be inferred using the Viterbi

algorithm on a probabilistic graph model determined from the crane process model and site

layout (Section 4). Actual recorded image sequences of a tower crane over several hours are

converted into activity reports and compared to manually determined ground truth (Section

5).

PROPOSED TECHNIQUE

The proposed activity estimation and reporting technique consists of two steps. The first
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step estimates the crane jib rotation angle for each frame by converting a given surveillance

image into a simplified image through a signal processing pipeline, then comparing the

image to rendered images generated from a tower crane model. The best fit rendered image

determines the rotation angle. From the trajectory information, the second step uses the

Viterbi algorithm to infer the activity states from a probabilistic instantiation of the crane

process model. This section discusses the overall methodology, while the subsequent sections

detail further the approach.

The experimental data was obtained from a surveillance camera mounted on the Georgia

Tech campus that monitors the construction of a building. The camera views the construc-

tion site from the roof of a nearby building. The perspective allows for the structure and it

surrounding area to be seen. Access to the roof is possible, allowing for measurement of the

crane and the camera parameters for modeling purposes. A robotic total station (RTS) was

used to measure 3D points necessary for camera calibration (Hartley and Zisserman 2003)

and tower measurement. The video sequences were captured at three seconds per frame.

The known information, aside from the modeling data above, includes knowledge regard-

ing the site layout and its planned use. Inferring the crane activities requires knowledge

of the functions associated to different regions of the site space. Many construction sites

have site layout plans that describe the intended use of the construction work space, which

includes a plan view description of the extents of the as-built structure, expected roadways,

laydown yards, and permissible crane flyby zones. Figure 1(a) shows the building construc-

tion site divided into three major zones: driveway, parking lot, and working zone. The site’s

logistics plan, Figure 1(b), indicates that the concrete mixer is allocated two spots along the

driveway, where it serves the crane. The coverage of the crane jib is a disc centered at the

tower mast. Empirically, the crane loads materials from the storage area to unload in the

work zone. Ideally, if the storage area is organized with sub-areas for distinct material types,

the material type lifted by the crane could be inferred by area. Based on our observations of

the available surveillance video, that is not strictly the case. However, out of all the materials

5

Journal of Computing in Civil Engineering. Submitted September 19, 2011; accepted July 23, 2012; 
         posted ahead of print November 17, 2012. doi:10.1061/(ASCE)CP.1943-5487.0000242

Copyright 2012 by the American Society of Civil Engineers
J. Comput. Civ. Eng. 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

G
E

O
R

G
IA

 T
E

C
H

 L
IB

R
A

R
Y

 o
n 

08
/2

1/
13

. C
op

yr
ig

ht
 A

SC
E

. F
or

 p
er

so
na

l u
se

 o
nl

y;
 a

ll 
ri

gh
ts

 r
es

er
ve

d.



Acc
ep

ted
 M

an
us

cri
pt 

Not 
Cop

ye
dit

ed

lifted, the concrete bucket is unique. The concrete mixers are located at specific spots of

the work site, thus distinguishing the concrete pouring activity from other materials lifting

tasks.

Automated estimation of the jib rotation angle will be performed through the use of a 3D

crane model in combination with the camera calibration parameters. From the model and the

camera parameters, 3D pose estimation techniques will provide the jib rotation angle versus

time. 3D pose estimation algorithms first generate renderings of the 3D crane as perceived

by a camera with known parameters. These rendered images are then compared to the

actual observed image. The estimated geometry is correct when the rendered image and the

captured image are in agreement. At this point, automated activity analysis is performed

by converting the continuous trajectory information into discrete activity observations over

time. The activity observations provide coarse observations over time such as stopped,

moving, in region of interest, etc., which are then analyzed to infer the true activity states

over time. Analysis is performed using the Viterbi algorithm given a probabilistic graph

model for the activities associated to a process model.

The automated process is summarized as follows:

1. Camera calibration and tower crane model generation.

2. Conversion of process model to probabilistic graph model.

3. Translation of site layout information to computational rules.

4. Image processing to generate a binary representation.

• Sky extraction through thresholding.

• Skyline removal through background modeling.

5. Crane jib angle estimation through rendering.

• Local search for crane jib angle by optimizing a pose-fitting energy.

• Kalman filtering to clean noise and estimate velocity.
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6. Crane trajectory converstion to crane state observations.

7. Crane activity state sequence inference from crane state observations.

8. Automated computation of activity statistics.

The following section describes the algorithms further.

CRANE JIB TRACKING

Tracking of the crane jib using vision will be performed through a generative model, and

will provide the jib angle signal versus time. The generative model simulates an expected

rendering of the sensed image given the crane angle. The rendered image is not a true-life

rendering of the work-site as seen in Figure 1(a), but is instead a rough approximation that

depicts only the crane model. The simplified rendering is compared to a processed version of

the actual sensed image, as per Figure 2. The angle θ∗k that maximizes agreement between

the two is the current crane jib angle.

A crude crane model was determined by surveying the installed crane using a robotic

total station (RTS). The final model is depicted in Figure 3. Using the known camera

calibration configuration, a rendering of the crane jib generates a predicted image of the scene

given a specified jib rotation angle. Figure 4(d) depicts several such simulated renderings

given distinct jib rotation angles. The renderings only depict the crane jib, and exclude

both the tower and the tower mast. These binary images must be compared to the actual

captured camera image. Given that the image is far richer than the simulated rendering,

pre-processing algorithms convert the captured image into a binary image. The process for

doing so incorporates three steps, all of which are described in the following paragraphs: (a)

cropping of the image to consist of the crane jib operational region, (b) a sky elimination

step which identifies the sky regions, and (c) a background subtraction step which isolates

the crane arm from other static elements of the image.

The first and simplest step isolates the image region that the crane arm could realistically

occupy. The region is identified by rotating the model through the full 360◦ arc and noting
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the crane jib image regions of all of the projections. In this case, that corresponds roughly

to the top portion of the image (100 lines of 480 lines). This step is depicted in Figure 4(a).

The second step converts the image to grayscale and applies Otsu’s thresholding algorithm

(Otsu 1979) to the image in order to isolate and remove the sky regions of the image. Results

for various sky conditions are depicted in Figure 4(b). The remaining visual elements in the

image Iskyline are the tower crane and buildings.

The buildings and other such permanent visual elements form the skyline. These elements

can be identified and removed using a background model. The algorithm utilized is the single

Gaussian background modeling algorithm (Wren et al. 1997), which models the background

as an image whose intensities obey a Gaussian distribution. Associated to each pixel are

mean and covariance values. The expected image is generated by the mean pixel values.

When a new image is captured and has the sky regions removed, it is then compared against

the mean Gaussian model. Pixels are considered to be outliers if they have low likelihood of

belonging to the Gaussian model, e.g., if they lie too many standard deviations away from

the mean. Here, the threshold was two standard deviations. The third row, Figure 4(c)

depicts the classified statistical outliers to the Gaussian image model. What mostly remains

in the output image Icrane is the crane jib.

The rendered binary image is compared to the processed surveillance camera image to

see how well the two images match. Let Imodel(θ) represent the silhouette generated from the

3D model with jib angle θ, and let Icrane(tk) represent the current processed camera image.

The overlap energy between these two binary images is defined as:

E(θ) =
∑

p

Imodel(θ; p) · Icrane(tk; p),

which sums over all image pixels, p. When the estimated jib angle agrees with the actual

jib angle, the two silhouette images are in agreement and the energy is maximal. Searching

through all possible rotation angles can be exhaustive given the need to render the images.
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Since the target application is tracking, we can assume that the angle from the previous frame

is known and the current angle is sought. As the crane has a finite angular rate of change,

the set of angles reachable from one frame to the next is limited. Thus a window-based

search is applied to find the angle that maximizes the matching energy E(θ),

θ� = argmaxθ∈[θ−−rθ,θ−+rθ]
E(θ),

where θ− is the jib angle from the previous frame and rθ is the search radius. The angular

search range [θ− rθ, θ+ rθ] is discretely approximated with the constant step size Δθ (here,

Δθ = 1◦). The angle measurement is then used in a constant velocity Kalman filter to

estimate the velocity and to smooth out any noise in the measurements. By choosing a

second order model, with acceleration as the uncertainty, the Kalman filter will estimate

velocity from position measurements.

ACTIVITY INFERENCE

Once the jib angle trajectory is known, the activities of the crane can be inferred. As a

lifting machine which moves materials around the construction site, a tower crane’s activity

can be clearly defined as loading, lifting and unloading materials. A static crane occurs

during loading, unloading, or transitions between the two, while a moving crane corresponds

to lifting. In the scenarios being considered, the primary activity of the crane is to assist

with concrete pours, with material hoist cycles occuring intermittently. Crane activity will

be categorized into concrete pouring and non-concrete pouring. Since the material being

lifted is not actively classified, the site layout plans will be exploited to infer the tower

crane’s activities. Based on the site plan 1(b), a mapping between the crane jib rotation

angle and activity zones can be extracted to obtain Figure 5(a). When overlaid with the

site plan, the work zone corresponds to where the structure will be, and the mixing zones

correspond to where the concrete mixers will be.

Based on the activity categories and the crane action modes (lifting, loading, unloading),
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a natural model for describing the crane activity is the process model which is a graph-based

model for describing a process. Following the description of (Gong and Caldas 2009), the

process model breaks down the overall concrete pour process into a collection of activity

states, which define the graph nodes, with acceptable transitions between the states defin-

ing the directed graph edges. Transitions between activity nodes happen when the proper

observable condition is met, that is typically associated with initiating the activity state. As

shown in Figure 5(b), the process model for concrete pouring has five states which normally

happen in a fixed order: concrete loading at the mixer, moving from the mixer to work

zone, unloading concrete at the work zone, moving from the work zone back to the mixer,

and detaching the concrete bucket at the mixing zone. An additional two states capture

the non-concrete pouring activities. Transitions between states are determined by motion

of the crane jib. To be robust to the measurement noise, two thresholds are defined. One

is for the instant angular speed, the other is for the state transition. When the instant

angular speed exceeds the speed threshold, the crane jib is considered to be moving. To

generate a transition, the transition event has to be continuously detected for a specific

amount of time (the time threshold). The thresholds were obtained by taking a training

video with crane movements and manually identifying proper values (they were 2◦/s and 3

frames respectively).

The activity observations are the events that trigger transitions between activity states,

which are essentially the stopped and moving observations. Furthermore, stopping within

a region with a known functionality triggers a separate observation than the generic stop

observation. Figure 6 depicts the output observations given the trajectory information. The

blue continuous curve (whose axis is to the left) depicts the actual crane jib angle trajectory

over time, while the green discrete state curve illustrates the activity observations (and whose

axis is to the right).

The true activity states of the system over time must be inferred from the activity

observations. The Viterbi algorithm provides an optimal estimate of the activity states
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over time given a probabilistic model of the activity observations and of the transitions

between activity states. Thus, the process model from Figure 5 must be augmented to have

transition probabilities associated with each directed edge, plus self-transition probabilities.

Furthermore, additional edges are required indicating the link between the states and the

observations. Figure 7(a) depicts the graph of the observation probabilities conditioned

on the activity states, denoted by P (x | y) where x is the activity state variable and y is

the output observation variable. Figure 7(b) depicts the graph of current activity state

probabilities given the previous activity state, denoted by P (xi | xi−1) where the subscripts

denote the observation time. In both cases, missing links imply zero probability of occurance.

Both of the probabilities are used to define the cost of selecting the current activity state

given the current observation and the previous activity state, which the Viterbi algorithm

uses to find the optimal sequence of state transitions given the measured observations.

Based on the defined probabilities, the optimization problem is defined:

{x∗
1, · · · , x∗

N} = argmax
x1,··· ,xN

N∑

i=1

(− logP (xi | yi)− logP (xi | xi−1)) , (1)

which returns the optimal selection of activity states in time {x1, · · · , xN} given N total

activity observations {y1, · · · , yN} and a known initial state x0. Where out-of-sequence

events may occur, it is common to assign a low probability of occurence in order to robustly

manage them. For example, since the threshold for stopped versus moving may not always

be accurate for the given scenario, there is a low probability of measuring a stop condition in

accurately, thus the small probability connecting Return Bucket to the Stop/Slow observation

in Figure 7(a). Assigning non-zero probabilities allows the inference to contemplate multiple

options in order to pick the most likely. Because of the way that the Viterbi algorithm

processes a probabilistic graph model, multiple options are considered and non-unique paths

can be resolved. For example, once the crane has completed a pour cycle, the operator can

choose to service other workers or can choose to continue servicing the concrete pouring team.
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Given the observations over time, the Viterbi algorithm correctly identifies the action taken

by the crane operator at a particular instance of time when the best sequence of activities to

represnt the observations can be established. Figure 8 depicts an example case of inference

from a jib angle track signal and its observation signal. Based on the optimization equation

(1), the sequence of activity states in Figure 8(b) was inferred to be generated from the

sequence of activity observations in Figure 8(a). The accuracy of the inferencing algorithm

is discussed in the next section.

EXPERIMENTS

This section covers the resulting output associated to the proposed methodology for

videos captured during crane operation. In particular, two image sequences generate activity

timing reports for observed concrete pouring cycles, while an additional sequences is applied

to another cyclic material delivery task. Sample frames from each sequence type are depicted

in Figure 9. The video sequences were also manually processed in order to validate that the

automated activity timing results were consistent with a human annotator. All results are

discussed.

Concrete Pour Cycles. The two concrete pour video sequences contain material hoist

activities that are not concrete pour cycles. In the first sequence, concrete pouring is in-

terrupted then resumed. The algorithm correctly infers the proper begin and end points

of each cycle as can be seen in the activity versus time plot of Figure 10(a). The concrete

pour timing chart is given in Table 1. The table consolidates the return movement and the

bucket drop as simply one consolidated time labeled Return. There are two sets of cycles

C1 to C3 and C4 to C8. Of note, cycle C1 is the longest. Inspection of the video shows

that the concrete mixer servicing the bucket left the work-site and a new mixer began to

service the concrete pour cycles. The remaining cycles were serviced by the same concrete

source and show more uniform timing. The second concrete pouring sequence contained only

three complete pour cycles, followed by several material hoist tasks. The activity versus time
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plot is given in Figure 10(b), while the activity timing table is found in Table 2. Outside

of the outlier pour cycle from the first sequence, the times spent on the concrete pouring

activities within each cycle are consistent, which is expected when the crane is operated by

an experienced operator. Time spent on concrete loading is shorter than time on concrete

pouring, and time of moving the bucket to the working zone is longer than time of moving

the bucket back to the mixer.

The manual annotations of the crane activity state matches well that of the algorithm for

the concrete pour cycles, but not so well for the other material hoist tasks. The difference

lies in the approach for going from the video to the activity label. When viewing the video

frame-by-frame, there can be some uncertainty as to the crane movement, plus the human

may also apply different thresholds for deciding when there is motion than the algorithm.

For example, the crane hook may move while the crane jib remains static, which is then

followed by a crane jib motion. Human annotators tend to trigger motion when the crane

hook begins moving, which means that the human tends to have higher movement times

versus stopped times (as can be seen in many of the Move versus Pour numbers). The

automated algorithm generates consistent observations as to when the crane is in motion or

not. For example, in reference to Figure 6, the first sequence has a point where the crane

slowly drifts a few degrees (between time 900 and 1000). The algorithm does not consider

the drift to be separate hoist activity transitions, while the manual annotator does as can be

seen for the same time period in Figure 10(a). A review of the video shows that the algorithm

interpretation is sensible as there was not sufficient activity to trigger activity state changes.

In general, much of the minor variation in activity transitions between the automated and

human annotations are a result of differences in identifying when the crane is moving versus

when it is stopped. Large errors are often due to special events in worker activity that cause

incorrect inferences. Overall, however, a review of the numbers shows that the automated

annotation is usually within 10% of the human annotation for a cycle (with averages of 296

versus 279 seconds for Sequence 1 and 229 versus 211 seconds for Sequence 2).
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Material Hoist Cycles. The third video consists of a material delivery event that was

combined with material hoist cycles to install the material at its installation location. A

truck with a large flatbed, c.f. Figure 9(b), was unloaded via crane leading to many material

hoist cycles. Borrowing from the same probabilistic graph model, however with adjustments

to the site plan to incorporate a flatbed loading zone, and also to the cycle transitions,

activity inference is performed as for the concrete pours. The final results can be found in

Figure 11. Note that initially there is a material installation, followed by attention to another

group of workers, followed by a return to the material resources to install which continues

for the duration of the day. Statistics of the cycle timings can be found in Table 3. While

the majority of the cycle estimates are the same as for the manual annotation, there is one

obvious difference occuring roughly between frames 1600-2500 (cycle C12). At that point,

the crane operator returned the hook to the loading area, which was followed by a pause in

the materials delivery as a new flatbed is brought in and prepared for additional material

delivery. The inferencing algorithm cannot distinguish total inactivity from loading activity

when the hook is in the material zone, thus the algorithm estimates the crane hook as being

in the loading state, whereas a human can clearly see that there is no direct loading activity

going on. There is indirect activity as the new materials are delivered and unstrapped. These

cases can be remedied by tracking the hook and also detecting the existence of personnel

or material resources, much as in (Gong and Caldas 2009). In this case, the algorithm

identified the outlier cycle based on the prevailing statistics. If the outlier load time for

C12 is removed, then the average load time drops to 264 seconds and the average cycle time

drops to 470 seconds, both of which are closer to the human annotated times (within 13%

and 3.5% respectively).

Implementation Discussion. In order to run the algorithm several parameters were nec-

essary, many of which were manually obtained from a single pass through a video sequence

not related to the ones processed. By comparing the results visually against the video, the
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velocity and timing parameters could be readily obtained. The Kalman filter parameters are

obtained from the measurement fluctuations associated to a static jib. Lastly, the probabili-

ties in the graph models were likewise obtained by running the algorithm through a separaet

video sequence. While machine learning may be used as in (Gong and Caldas 2009), the

amount of time needed to generate a training dataset is far larger than the few minute spent

adjusting the parameters. Furthermore, the probabilities associated with the graph model

generate some robustness to these parameters. The process model is quite similar from site

to site, thus the model and its probabilities can be recycled with slight adjsutments per

construction site. The concrete pour process and many material hoisting processes are very

similar in terms of the process model graph structure, thus we anticipate that a general prob-

abilistic graph model can be identified and loaded to perform the activty inferencing. Lastly,

we believe that the tower crane models will eventually part of a public domain library of

construction machines that can be loaded automatically and registered automatically using

the 2D-3D pose estimation algorithm, thus freeing the practitioner from manaully measuring

the structure geometry.

CONCLUSION

This paper illustrated the use of computer vision and discrete state inference algorithms

for construction project analysis. A visual tracking algorithm for the tower crane coupled

with a finite state machine for activity states enabled construction activity understanding.

Tower crane activity was categorized into concrete pour cycles and non-concrete pouring

movement, with automated work sampling timing statistics of the concrete pour cycles.

Extension of the work for material hoist cycles was also demonstrated. Experimental results

show that the visual tracking algorithm is able to track the tower crane, while a probabilistic

instantiation of the finite-state machine with observations of the transitions distinguishes

the crane activities. Errors in the activity timing are within 10-15%. Weaknesses of the

algorithm revolved around poor inferencing due to unmodeled events. These errors can be

remedied through additional visual processing.
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Future work seeks to consider additional activities common to the construction process.

Furthermore, the vision-based jib tracking can be improved. In this vein, future work seeks

to actively detect, track, and classify the load to more accurately assess the activity state.
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TABLE 1. Automated (left) and manual (right) tabulation of concrete pour procedure
for Sequence 1 (units are seconds).

No. Load Move Pour Return Cycle

C1 111 36 267 411 825

C2 54 48 78 36 216

C3 60 51 78 99 288

C4 63 42 78 39 222

C5 42 45 57 45 189

C6 42 57 57 48 204

C7 45 48 84 39 216

C8 45 42 42 75 204

X Acc. Time 462 369 741 792 2364

X Avg. Time 58 46 93 99 296

Load Move Pour Return Cycle

93 75 228 342 738

54 60 60 57 231

39 63 63 78 243

48 48 63 57 216

36 48 42 57 183

42 54 57 48 201

45 60 69 57 231

30 51 30 78 189

387 459 612 774 2232

48 57 77 97 279
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TABLE 2. Automated (left) and manual (right) tabulation of concrete pour procedure
for Sequence 2 (units are seconds).

No. Load Move Pour Return Cycle

C1 48 42 81 39 210

C2 36 42 39 36 153

C3 54 51 123 96 324

X Acc. Time 138 135 243 171 687

X Avg. Time 46 45 81 57 229

Load Move Pour Return Cycle

45 54 57 51 207

36 48 27 51 162

39 78 96 51 264

120 180 180 153 633

40 60 60 51 211
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TABLE 3. Automated (left) and manual (right) tabulation of material delivery cycles
for Sequence 3 (units are seconds). Outliers are with strike-out, while bold times are
averages with the outliers removed.

No. Load Move Deliver Return Cycle

C1 168 39 81 27 315

C2 228 48 69 33 378

C3 222 42 105 42 411

C4 69 39 93 30 231

C5 162 36 132 27 357

C6 186 24 93 45 348

C7 141 60 45 30 276

C8 141 36 93 51 321

C9 465 81 123 57 726

C10 306 114 78 39 537

C11 240 48 141 45 474

C12 2754 48 150 42 2994

C13 210 87 87 39 423

C14 249 45 144 57 495

C15 390 111 279 36 816

C16 792 72 81 0 945

X Acc. Time 6723 930 1794 600 10047

X Avg. Time 264 58 112 38 470

Load Move Deliver Return Cycle

165 57 66 33 321

213 66 57 48 384

189 69 99 24 381

81 45 90 33 249

111 96 120 30 357

168 48 90 30 336

141 51 63 30 285

141 51 81 48 321

333 66 123 45 567

258 138 117 39 552

219 75 135 36 465

132 75 120 63 390

207 54 126 45 432

216 78 141 51 486

378 114 273 57 822

786 63 90 0 939

3738 1146 1791 612 7287

234 72 112 38 455
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(a) Imaged crane structure and site layout.
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(b) Site logistics plans.

FIG. 1. Depictions of surveillance image and site plan.
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FIG. 2. Comparison pipeline to identify crane rotation angle.
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FIG. 3. Depiction of the crane wireframe model and the surveillance configuration.
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(a) Original cropped images.

(b) Images after sky removal, Iskyline(tk).

(c) Skyline removal through background substraction, Icrane(tk).

(d) Rendered/simulated version after angle optimization, Irender(θ
∗
k).

FIG. 4. Output images of the processing pipeline for three sample images
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(a) Plan view of crane activity zones.
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(b) Crane activity process model

FIG. 5. Understanding crane activities by incorporating information regarding site
logistics plans.
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FIG. 6. Crane angle vs time (blue, dash-dotted, left axis) and crane state observation
vs. time (green, solid, right axis)
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(a) Observation probabilities.
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FIG. 7. Observation and transition probability graphs.
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(a) Activity observations vs. time
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(b) Activity states vs. time

FIG. 8. Viterbi algorithm takes activity observations over time and infers the associated
activity states versus time.
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(a) Concrete pouring sequence.

(b) Material hoisting sequence.

FIG. 9. Sample images from each experiment type, with demarcated principal loading
areas (white box) and the load being hoisted (arrow).
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(a) Crane activity states for sequence 1
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FIG. 10. Activity state vs time with top row being the computed activity states and
the bottom being the ground-truth.
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FIG. 11. Activity state vs time for material hoist cycles. The top row is the computed
activity states and the bottom is the ground-truth.
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